When Compressive Sensing Meets Mobile Crowdsensing

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book provides a comprehensive introduction to applying compressive sensing to improve data quality in the context of mobile crowdsensing. It addresses the following main topics: recovering missing data, efficiently collecting data, preserving user privacy, and detecting false data. Mobile crowdsensing, as an emerging sensing paradigm, enables the masses to take part in data collection tasks with the aid of powerful mobile devices. However, mobile crowdsensing platforms have yet to be widely adopted in practice, the major concern being the quality of the data collected. There are numerous causes: some locations may generate redundant data, while others may not be covered at all, since the participants are rarely systematically coordinated; privacy is a concern for some people, who don¿t wish to share their real-time locations, and therefore some key information may be missing; further, some participants may upload fake data in order to fraudulently gain rewards. Toaddress these problematic aspects, compressive sensing, which works by accurately recovering a sparse signal using very few samples, has proven to offer an effective solution.

Informacija

Autorius: Linghe Kong, Guihai Chen, Bowen Wang,
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2020
Knygos puslapių skaičius: 140
ISBN-10: 9811377782
ISBN-13: 9789811377785
Formatas: 235 x 155 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „When Compressive Sensing Meets Mobile Crowdsensing“

Būtina įvertinti prekę

Goodreads reviews for „When Compressive Sensing Meets Mobile Crowdsensing“