Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Variational and Monotonicity Methods in Nonsmooth Analysis

-15% su kodu: ENG15
79,18 
Įprasta kaina: 93,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
79,18 
Įprasta kaina: 93,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 93.1500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book provides a modern and comprehensive presentation of a wide variety of problems arising in nonlinear analysis, game theory, engineering, mathematical physics and contact mechanics. It includes recent achievements and puts them into the context of the existing literature. The volume is organized in four parts. Part I contains fundamental mathematical results concerning convex and locally Lipschits functions. Together with the Appendices, this foundational part establishes the self-contained character of the text. As the title suggests, in the following sections, both variational and topological methods are developed based on critical and fixed point results for nonsmooth functions. The authors employ these methods to handle the exemplary problems from game theory and engineering that are investigated in Part II, respectively Part III. Part IV is devoted to applications in contact mechanics. The book will be of interest to PhD students and researchers in applied mathematics as well as specialists working in nonsmooth analysis and engineering.

Informacija

Autorius: Nicu¿or Costea, Csaba Varga, Alexandru Kristály,
Serija: Frontiers in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 464
ISBN-10: 3030816702
ISBN-13: 9783030816704
Formatas: 240 x 168 x 25 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Variational and Monotonicity Methods in Nonsmooth Analysis“

Būtina įvertinti prekę

Goodreads reviews for „Variational and Monotonicity Methods in Nonsmooth Analysis“