Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Using Clustering and Association Rules Techniques: To Compress Data Sets

-20% su kodu: BOOKS
71,28 
Įprasta kaina: 89,10 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
71,28 
Įprasta kaina: 89,10 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 89.1000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

There are many benefits from using data compression, like saving space on hard drives or lowering the use of transmission bandwidth in the network. In this work two intelligent techniques are used as lossless data compression algorithms; namely, clustering and association rules techniques. In the first stage, the database is compressed by using a clustering technique followed by association rules algorithm. The first technique partitions the data that exist in the database file and save these data as clusters by using the adaptive k-means algorithm while the second technique extracts the important rules from each cluster using the apriori algorithm. Several experiments are made in several different sizes of database. The experiments show that using the adaptive k-means algorithm and apriori algorithm together give better compression ratio and smaller compressed file size. The apriori algorithm increases the compression ratio of the adaptive k-means algorithm when they are used together.

Informacija

Autorius: Rasha Subhi Ali, Ahmed T. Sadiq, Mehdi G. Duaimi,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2019
Knygos puslapių skaičius: 140
ISBN-10: 6134979031
ISBN-13: 9786134979030
Formatas: 220 x 150 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Using Clustering and Association Rules Techniques: To Compress Data Sets“

Būtina įvertinti prekę

Goodreads reviews for „Using Clustering and Association Rules Techniques: To Compress Data Sets“