Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy

-20% su kodu: BOOKS
135,50 
Įprasta kaina: 169,38 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
135,50 
Įprasta kaina: 169,38 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This thesis presents a highly innovative study of the ultrafast structural and vibrational dynamics of hydrated phospholipids, the basic constituents of cell membranes. As a novel approach to the water-phospholipid interface, the author studies phosphate vibrations using the most advanced methods of nonlinear vibrational spectroscopy, including femtosecond two-dimensional infrared spectroscopy. He shows for the first time that the structure of interfacial water undergoes very limited fluctuations on a 300 fs time scale and that the lifetimes of hydrogen bonds with the phospholipid are typically longer than 10 ps. Such properties originate from the steric hindrance of water fluctuations at the interface and the orienting action of strong electric fields from the phospholipid head group dipoles. In an extensive series of additional experiments, the vibrational lifetimes of the different vibrations and the processes of energy dissipation are elucidated in detail.

Informacija

Autorius: René Costard
Serija: Springer Theses
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2015
Knygos puslapių skaičius: 116
ISBN-10: 3319220659
ISBN-13: 9783319220659
Formatas: 241 x 160 x 13 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy“

Būtina įvertinti prekę

Goodreads reviews for „Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy“