Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Ultimate Parallel and Distributed Computing with Julia For Data Science

-15% su kodu: ENG15
74,88 
Įprasta kaina: 88,09 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
74,88 
Įprasta kaina: 88,09 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 88.0900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Unleash Julia's power: Code Your Data Stories, Shape Machine Intelligence! Book Description This book takes you through a step-by-step learning journey, starting with the essentials of Julia's syntax, variables, and functions. You'll unlock the power of efficient data handling by leveraging Julia arrays and DataFrames.jl for insightful analysis. Develop expertise in both basic and advanced statistical models, providing a robust toolkit for deriving meaningful data-driven insights. The journey continues with machine learning proficiency, where you'll implement algorithms confidently using MLJ.jl and MLBase.jl, paving the way for advanced data-driven solutions. Explore the realm of Bayesian inference skills through practical applications using Turing.jl, enhancing your ability to extract valuable insights. The book also introduces crucial Julia packages such as Plots.jl for visualizing data and results. The handbook culminates in optimizing workflows with Julia's parallel and distributed computing capabilities, ensuring efficient and scalable data processing using Distributions.jl, Distributed.jl and SharedArrays.jl. This comprehensive guide equips you with the knowledge and practical insights needed to excel in the dynamic field of data science and machine learning. Table of Contents 1. Julia In Data Science Arena 2. Getting Started with Julia 3. Features Assisting Scaling ML Projects 4. Data Structures in Julia 5. Working With Datasets In Julia 6. Basics of Statistics 7. Probability Data Distributions 8. Framing Data in Julia 9. Working on Data in DataFrames 10. Visualizing Data in Julia 11. Introducing Machine Learning in Julia 12. Data and Models 13. Bayesian Statistics and Modeling 14. Parallel Computation in Julia 15. Distributed Computation in Julia Index

Informacija

Autorius: Nabanita Dash
Leidėjas: Orange Education Pvt Ltd
Išleidimo metai: 2024
Knygos puslapių skaičius: 486
ISBN-10: 9391246869
ISBN-13: 9789391246860
Formatas: 235 x 191 x 26 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Ultimate Parallel and Distributed Computing with Julia For Data Science“

Būtina įvertinti prekę