Twitter Spam Detection and Traffic Classification: A data-driven cyber security approach

-15% su kodu: ENG15
53,70 
Įprasta kaina: 63,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
53,70 
Įprasta kaina: 63,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 63.1800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The rapid growth of the Internet and social media has led to an increase in the size of Internet traffic and the complexity of analyzing traffic behavior, especially in large-scale networks like social media platforms. Traditional rule-based methodologies are being replaced by automated approaches powered by machine learning, driven by the availability of large datasets that enable high-performance AI models. This book reviews recent research on cyber traffic analysis over social networks and the Internet, focusing on similarity, correlation, and collective indication concepts, and emphasizing the importance of security goals in classifying network hosts, applications, users, and tweets. To tackle these challenges, the paper introduces a new research methodology called data-driven cyber security (DDCS) and its application in analyzing social and Internet traffic. The DDCS methodology consists of three main components: cyber security data processing, cyber security feature engineering, and cyber security modeling.

Informacija

Autorius: Soumitra Das, Deepika Jaiswal,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2023
Knygos puslapių skaičius: 76
ISBN-10: 6206737055
ISBN-13: 9786206737056
Formatas: 220 x 150 x 5 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Twitter Spam Detection and Traffic Classification: A data-driven cyber security approach“

Būtina įvertinti prekę

Goodreads reviews for „Twitter Spam Detection and Traffic Classification: A data-driven cyber security approach“