Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

0 Mėgstami
0Krepšelis

Tsunami Data Assimilation for Early Warning

-20% su kodu: BOOKS
216,82 
Įprasta kaina: 271,02 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
216,82 
Įprasta kaina: 271,02 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
2025-03-31 216.82 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book focuses on proposing a tsunami early warning system using data assimilation of offshore data. First, Green¿s Function-based Tsunami Data Assimilation (GFTDA) is proposed to reduce the computation time for assimilation. It can forecast the waveform at Points of Interest (PoIs) by superposing Green¿s functions between observational stations and PoIs. GFTDA achieves an equivalently high accuracy of tsunami forecasting to the previous approaches, while saving sufficient time to achieve an early warning. Second, a modified tsunami data assimilation method is explored for regions with a sparse observation network. The method uses interpolated waveforms at virtual stations to construct the complete wavefront for tsunami propagation. Its application to the 2009 Dusky Sound, New Zealand earthquake, and the 2015 Illapel earthquake revealed that adopting virtual stations greatly improved the tsunami forecasting accuracy for regions without a dense observation network. Finally, a real-time tsunami detection algorithm using Ensemble Empirical Mode Decomposition (EEMD) is presented. The tsunami signals of the offshore bottom pressure gauge can be automatically separated from the tidal components, seismic waves, and background noise. The algorithm could detect tsunami arrival with a short detection delay and accurately characterize the tsunami amplitude. Furthermore, the tsunami data assimilation approach is combined with the real-time tsunami detection algorithm, which is applied to the tsunami of the 2016 Fukushima earthquake. The proposed tsunami data assimilation approach can be put into practice with the help of the real-time tsunami detection algorithm.

Informacija

Autorius: Yuchen Wang
Serija: Springer Theses
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2023
Knygos puslapių skaičius: 116
ISBN-10: 9811973415
ISBN-13: 9789811973413
Formatas: 235 x 155 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Tsunami Data Assimilation for Early Warning“

Būtina įvertinti prekę

Goodreads reviews for „Tsunami Data Assimilation for Early Warning“