Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Topological Optimization of Isotropic Structures: Effect of Self-weight and Study of Numerical Difficulties

-15% su kodu: ENG15
61,04 
Įprasta kaina: 71,81 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
61,04 
Įprasta kaina: 71,81 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 71.8100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Topological Optimization of Isotropic Structures provides a brief history of the development of the topology optimization method as well as a discussion of the numerical challenges associated with it. This discussion includes some numerical experiments and an evaluation of the various techniques used to overcome these challenges. The most common optimization problem that is compliance-minimization problem with volume constrained compliance minimization is presented. Finite element analysis part for quadrilateral 4-node and 8-node element with formulations of mathematical approach for self weight problem using MATLAB coding has also been studied. The result obtains from ANSYS and MATLAB based OC approach for static and self weight loading condition are compared with different other methods such as SA-SIMP approach, adaptive refinement approach, bi-directional evolutionary structure optimization (BESO) for mathematical justification of approaches used.

Informacija

Autorius: Naman Jain
Leidėjas: LAP Lambert Academic Publishing
Išleidimo metai: 2017
Knygos puslapių skaičius: 116
ISBN-10: 6202070404
ISBN-13: 9786202070409
Formatas: 220 x 150 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Topological Optimization of Isotropic Structures: Effect of Self-weight and Study of Numerical Difficulties“

Būtina įvertinti prekę

Goodreads reviews for „Topological Optimization of Isotropic Structures: Effect of Self-weight and Study of Numerical Difficulties“