Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Topics in the Geometry of Projective Space: Recent Work of F.L. Zak

-10% su kodu: ENG10
38,03 
Įprasta kaina: 42,26 
-10% su kodu: ENG10
Kupono kodas: ENG10
Akcija baigiasi: 2025-02-23
-10% su kodu: ENG10
38,03 
Įprasta kaina: 42,26 
-10% su kodu: ENG10
Kupono kodas: ENG10
Akcija baigiasi: 2025-02-23
-10% su kodu: ENG10
2025-02-28 42.2600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The main topics discussed at the D. M. V. Seminar were the connectedness theorems of Fulton and Hansen, linear normality and subvarieties of small codimension in projective spaces. They are closely related; thus the connectedness theorem can be used to prove the inequality-part of Hartshorne's conjecture on linear normality, whereas Deligne's generalisation of the connectedness theorem leads to a refinement of Barth's results on the topology of varieties with small codimension in a projective space. The material concerning the connectedness theorem itself (including the highly surprising application to tamely ramified coverings of the projective plane) can be found in the paper by Fulton and the first author: W. Fulton, R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Lecture Notes in Math. 862, p. 26-92 (Springer 1981). It was never intended to be written out in these notes. As to linear normality, the situation is different. The main point was an exposition of Zak's work, for most of which there is no reference but his letters. Thus it is appropriate to take an extended version of the content of the lectures as the central part of these notes.

Informacija

Autorius: Ven, R. Lazarsfeld,
Serija: Oberwolfach Seminars
Leidėjas: Birkhäuser Basel
Išleidimo metai: 1984
Knygos puslapių skaičius: 56
ISBN-10: 3764316608
ISBN-13: 9783764316600
Formatas: 254 x 178 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Topics in the Geometry of Projective Space: Recent Work of F.L. Zak“

Būtina įvertinti prekę