Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Tool Condition Monitoring In Micro-Milling: Noise Robust Approaches

-15% su kodu: ENG15
96,65 
Įprasta kaina: 113,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
96,65 
Įprasta kaina: 113,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 113.7000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Micro-milling is a precision milling technology where the cutting parameters are in micro scale. It has been increasingly applied to modern industry, from aerospace to bioengineering. Tool condition monitoring (TCM) in micro milling poses new challenges compared to conventional CNC machining, due to the high tool wear rate and high precision requirement associated with the features at micro-level. In this book, a generic noise-robust system is developed for the micro-milling tool condition monitoring. Mathematical tools such wavelet analysis and independent component analysis (ICA) have been applied to analyze the cutting force associated with different tool conditions. Continuous Hidden Markov models (HMMs) are adapted to model the tool wearing process and estimate the tool states based on the force features. Experimental studies on the tool state estimation in the micro-milling of pure copper and steel illustrate the effectiveness these approaches. This book serves as a valuable reference to the graduate students and the engineers engaged in the research in precision manufacturing, automation and control, and signal processing.

Informacija

Autorius: Kunpeng Zhu
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2011
Knygos puslapių skaičius: 232
ISBN-10: 3844384200
ISBN-13: 9783844384208
Formatas: 220 x 150 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Tool Condition Monitoring In Micro-Milling: Noise Robust Approaches“

Būtina įvertinti prekę