Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Time Series Forecasting using Deep Learning

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Deep Learning which comprises Deep Neural Networks (DNNs) has achieved excellent success in image classification, speech recognition, etc. But DNNs suffer a lot of challenges for time series forecasting (TSF) because most of the time-series data are nonlinear in nature and highly dynamic in behavior. TSF has a great impact on our socio-economic environment. Hence, to deal with these challenges the DNN model needs to be redefined, and keeping this in mind, data pre-processing, network architecture and network parameters are needed to be considered before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of TSF heavily depends on the data normalization technique. In this Book, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN for TSF. We also propose the Deep Recurrent Neural Network (DRNN) to predict the closing index of the Bombay Stock Exchange (BSE) and the New York Stock Exchange (NYSE) by using time series data.

Informacija

Autorius: Abhishek Das, Samit Bhanja,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2020
Knygos puslapių skaičius: 52
ISBN-10: 3330046163
ISBN-13: 9783330046160
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Time Series Forecasting using Deep Learning“

Būtina įvertinti prekę