The present text is an introduction to the theory of association schemes. We start with the de?nition of an association scheme (or a scheme as we shall say brie?y), and in order to do so we ?x a set and call it X. We write 1 to denote the set of all pairs (x,x) with x? X. For each subset X ? r of the cartesian product X×X, we de?ne r to be the set of all pairs (y,z) with (z,y)? r.For x an element of X and r a subset of X× X, we shall denote by xr the set of all elements y in X with (x,y)? r. Let us ?x a partition S of X×X with?? / S and 1 ? S, and let us assume X ? that s ? S for each element s in S. The set S is called a scheme on X if, for any three elements p, q,and r in S, there exists a cardinal number a such pqr ? that|yp?zq| = a for any two elements y in X and z in yr. pqr The notion of a scheme generalizes naturally the notion of a group, and we shall base all our considerations on this observation. Let us, therefore, brie?y look at the relationship between groups and schemes.
Autorius: | Paul-Hermann Zieschang |
Serija: | Springer Monographs in Mathematics |
Leidėjas: | Springer Berlin Heidelberg |
Išleidimo metai: | 2010 |
Knygos puslapių skaičius: | 300 |
ISBN-10: | 3642065562 |
ISBN-13: | 9783642065569 |
Formatas: | 235 x 155 x 17 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Theory of Association Schemes“