Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

The Structural Theory of Probability: New Ideas from Computer Science on the Ancient Problem of Probability Interpretation

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The Structural Theory of Probability addresses the interpretation of probability, often debated in the scientific community. This problem has been examined for centuries; perhaps no other mathematical calculation suffuses mankind's efforts at survival as amply as probability. In the dawn of the 20th century David Hilbert included the foundations of the probability calculus within the most vital mathematical problems; Dr. Rocchi's topical and ever-timely volume proposes a novel, exhaustive solution to this vibrant issue. Paolo Rocchi, a versatile IBM scientist, outlines a new philosophical and mathematical approach inspired by well-tested software techniques. Through the prism of computer technology he provides an innovative view on the theory of probability. Dr. Rocchi discusses in detail the mathematical tools used to clarify the meaning of probability, integrating with care numerous examples and case studies. The comprehensiveness and originality of its mathematical development make this volume an inspiring read for researchers and students alike.

Informacija

Autorius: Paolo Rocchi
Serija: Series in Computer Science
Leidėjas: Springer New York
Išleidimo metai: 2012
Knygos puslapių skaičius: 176
ISBN-10: 1461349273
ISBN-13: 9781461349273
Formatas: 235 x 155 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Structural Theory of Probability: New Ideas from Computer Science on the Ancient Problem of Probability Interpretation“

Būtina įvertinti prekę