The Nonlinear Limit-Point/Limit-Circle Problem

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

First posed by Hermann Weyl in 1910, the limit¿point/limit¿circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. This self-contained monograph traces the evolution of this problem from its inception to its modern-day extensions to the study of deficiency indices and analogous properties for nonlinear equations. The book opens with a discussion of the problem in the linear case, as Weyl originally stated it, and then proceeds to a generalization for nonlinear higher-order equations. En route, the authors distill the classical theorems for second and higher-order linear equations, and carefully map the progression to nonlinear limit¿point results. The relationship between the limit¿point/limit¿circle properties and the boundedness, oscillation, and convergence of solutions is explored, and in the final chapter, the connection between limit¿point/limit¿circle problems and spectral theory is examined in detail. With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, operator theory, and related fields.

Informacija

Autorius: Miroslav Bartusek, John R. Graef, Zuzana Dosla,
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2003
Knygos puslapių skaičius: 176
ISBN-10: 0817635629
ISBN-13: 9780817635626
Formatas: 235 x 155 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Nonlinear Limit-Point/Limit-Circle Problem“

Būtina įvertinti prekę

Goodreads reviews for „The Nonlinear Limit-Point/Limit-Circle Problem“