Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

The Hitchhikers Guide to Responsible Machine Learning: Interpretable and eXplainable Artificial Intelligence with examples in R

-15% su kodu: ENG15
35,19 
Įprasta kaina: 41,40 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
35,19 
Įprasta kaina: 41,40 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 41.4000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book is a unique entanglement of theory, examples and processes relevant to Responsible Machine Learning. You will find intuitions and examples for Interpretable Machine Learning (IML) and eXplainable Artificial Intelligence (XAI). Descriptions are supplemented by code snippets with examples for R with the use of randomForest, mlr3 and DALEX packages. Finally, the process is shown through a comic book describing the adventures of two characters, Beta and Bit. The interaction of these two shows the decisions that analysts often face, whether to try a different model, try another technique for exploration or look for other data -- questions like how to compare models or validate them. All examples are fully reproducible so that one can replay all adventures on a local desktop. Model development is a responsible and challenging task but also an exciting adventure. Sometimes textbooks focus only on the technical side, losing all the fun. Here we are going to have it all.

Informacija

Autorius: Przemys¿aw Biecek, Anna Kozak,
Leidėjas: Scientific Foundation SmarterPoland.pl
Išleidimo metai: 2022
Knygos puslapių skaičius: 52
ISBN-10: 8365291126
ISBN-13: 9788365291127
Formatas: 297 x 210 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Hitchhikers Guide to Responsible Machine Learning: Interpretable and eXplainable Artificial Intelligence with examples in R“

Būtina įvertinti prekę

Goodreads reviews for „The Hitchhikers Guide to Responsible Machine Learning: Interpretable and eXplainable Artificial Intelligence with examples in R“