Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

The exponent of Hölder calmness for polynomial systems: Connections between polynomial degree and exponent of Hölder calmness

-15% su kodu: ENG15
85,52 
Įprasta kaina: 100,61 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
85,52 
Įprasta kaina: 100,61 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 100.6100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This work is concerned with an analysis of Hölder calmness, a stability property derived from the concept of calmness. On the basis of characterizations for sublevel sets, procedures to determine points in such sets under a Hölder calmness assumption are analyzed. Also sufficient conditions for Hölder calmness of sublevel sets and of inequality systems will be given and examined. Further, since Hölder calmness of nonempty solution sets of finite inequality systems may be described in terms of error bounds, the local propositions are amplified to global ones. As an application the case of sublevel sets of polynomials and of general solution sets of polynomial systems is investigated. The question to be answered is in which way the maximal degree of the involved polynomials is connected to the exponent of Hölder calmness or of the error bound for the system in question.

Informacija

Autorius: Jan Heerda
Leidėjas: Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
Išleidimo metai: 2015
Knygos puslapių skaičius: 160
ISBN-10: 3838134427
ISBN-13: 9783838134420
Formatas: 220 x 150 x 11 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The exponent of Hölder calmness for polynomial systems: Connections between polynomial degree and exponent of Hölder calmness“

Būtina įvertinti prekę

Goodreads reviews for „The exponent of Hölder calmness for polynomial systems: Connections between polynomial degree and exponent of Hölder calmness“