Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.
Autorius: | Arnaud Debussche, Peter Imkeller, Michael Högele, |
Serija: | Lecture Notes in Mathematics |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2013 |
Knygos puslapių skaičius: | 180 |
ISBN-10: | 3319008277 |
ISBN-13: | 9783319008271 |
Formatas: | 235 x 155 x 11 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise“