Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

The Couette-Taylor Problem

-15% su kodu: ENG15
158,37 
Įprasta kaina: 186,32 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
158,37 
Įprasta kaina: 186,32 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 186.3200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de­ signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow­ ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .

Informacija

Autorius: Gerard Iooss, Pascal Chossat,
Serija: Applied Mathematical Sciences
Leidėjas: Springer US
Išleidimo metai: 2011
Knygos puslapių skaičius: 248
ISBN-10: 1461287308
ISBN-13: 9781461287308
Formatas: 235 x 155 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Couette-Taylor Problem“

Būtina įvertinti prekę