Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics

-15% su kodu: ENG15
98,29 
Įprasta kaina: 115,63 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
98,29 
Įprasta kaina: 115,63 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 115.6300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

There is a large gap between the engineering course in tensor algebra on the one hand and the treatment of linear transformations within classical linear algebra on the other hand. The aim of this modern textbook is to bridge this gap by means of the consequent and fundamental exposition. The book primarily addresses engineering students with some initial knowledge of matrix algebra. Thereby the mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises are provided in the book and are accompanied by solutions, enabling self-study. The last chapters of the book deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and are therefore of high interest for PhD-students and scientists working in this area. This third edition is completed by a number of additional figures, examples and exercises. The text and formulae have been revised and improved where necessary.

Informacija

Autorius: Mikhail Itskov
Serija: Mathematical Engineering
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2014
Knygos puslapių skaičius: 288
ISBN-10: 3642448186
ISBN-13: 9783642448188
Formatas: 235 x 155 x 16 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics“

Būtina įvertinti prekę

Goodreads reviews for „Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics“