Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Task-Directed Sensor Fusion and Planning: A Computational Approach

-20% su kodu: BOOKS
203,26 
Įprasta kaina: 254,08 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
203,26 
Įprasta kaina: 254,08 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 254.0800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

If you have ever hiked up a steep hill to reach a viewpoint, you will know that sensing can involve the expenditure of effort. More generally, the choice of which movement an intelligent system chooses to make is usually based on information gleaned from sensors. But the information required to make the motion decision may not be immediately to hand, so the system . first has to plan a motion whose purpose is to acquire the needed sensor information. Again, this conforms to our everyday experience: I am in the woods and don't know which direction to go, so I climb up to the ridge to get my bearings; I am lost in a new town, so I plan to drive to the next junction where there is sure to be a roadsign, failing that I will ask someone who seems to be from the locality. Why, if experiences such as these are so familiar, has the problem only recently been recognised and studied in Robotics? One reason is that until quite recently Robotics research was dominated by work on robot arms with limited reach and fixed in a workcell.

Informacija

Autorius: Gregory D. Hager
Serija: The Springer International Series in Engineering and Computer Science
Leidėjas: Springer New York
Išleidimo metai: 2013
Knygos puslapių skaičius: 276
ISBN-10: 1461288282
ISBN-13: 9781461288282
Formatas: 235 x 155 x 16 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Task-Directed Sensor Fusion and Planning: A Computational Approach“

Būtina įvertinti prekę

Goodreads reviews for „Task-Directed Sensor Fusion and Planning: A Computational Approach“