Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Symplectic Pseudospectral Methods for Optimal Control: Theory and Applications in Path Planning

-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 254.0800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The book focuses on symplectic pseudospectral methods for nonlinear optimal control problems and their applications. Both the fundamental principles and engineering practice are addressed. Symplectic pseudospectral methods for nonlinear optimal control problems with complicated factors (i.e., inequality constraints, state-delay, unspecific terminal time, etc.) are solved under the framework of indirect methods. The methods developed here offer a high degree of computational efficiency and accuracy when compared with popular direct pseudospectral methods. The methods are applied to solve optimal control problems arising in various engineering fields, particularly in path planning problems for autonomous vehicles. Given its scope, the book will benefit researchers, engineers and graduate students in the fields of automatic control, path planning, ordinary differential equations, etc.

Informacija

Autorius: Xinwei Wang, Haijun Peng, Jie Liu,
Serija: Intelligent Systems, Control and Automation: Science and Engineering
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2020
Knygos puslapių skaičius: 192
ISBN-10: 9811534373
ISBN-13: 9789811534379
Formatas: 241 x 160 x 17 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Symplectic Pseudospectral Methods for Optimal Control: Theory and Applications in Path Planning“

Būtina įvertinti prekę

Goodreads reviews for „Symplectic Pseudospectral Methods for Optimal Control: Theory and Applications in Path Planning“