Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
Autorius: | Michèle Audin, Eugene Lerman, Ana Cannas Da Silva, |
Serija: | Advanced Courses in Mathematics - CRM Barcelona |
Leidėjas: | Birkhäuser Basel |
Išleidimo metai: | 2003 |
Knygos puslapių skaičius: | 240 |
ISBN-10: | 3764321679 |
ISBN-13: | 9783764321673 |
Formatas: | 244 x 170 x 14 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Symplectic Geometry of Integrable Hamiltonian Systems“