Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Surface-Knots in 4-Space: An Introduction

-15% su kodu: ENG15
172,77 
Įprasta kaina: 203,26 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
172,77 
Įprasta kaina: 203,26 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 203.2600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field.
Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval.
Included in this book are basics of surface-knots and the related topics ofclassical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.

Informacija

Autorius: Seiichi Kamada
Serija: Springer Monographs in Mathematics
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2018
Knygos puslapių skaičius: 224
ISBN-10: 9811350469
ISBN-13: 9789811350467
Formatas: 235 x 155 x 13 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Surface-Knots in 4-Space: An Introduction“

Būtina įvertinti prekę