Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Support Vector Machine (SVM) Aggregation Modelling: Spatio-temporal Air Pollution Analysis

-20% su kodu: BOOKS
82,79 
Įprasta kaina: 103,49 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
82,79 
Įprasta kaina: 103,49 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 103.4900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems. This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation criteria for computational air pollution analysis includes: classification accuracy, prediction, spatio-temporal and decentralized analysis, we assert that these criteria can be improved using the proposed SSELM. Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed SSELM produced impressive results compared to SVM ensemble for air pollution analysis in Auckland region.

The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems.

This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation criteria for computational air pollution analysis includes: classification accuracy, prediction, spatio-temporal and decentralized analysis, we assert that these criteria can be improved using the proposed SSELM.

Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed SSELM produced impressive results compared to SVM ensemble for air pollution analysis in Auckland region.

Informacija

Autorius: Shahid Ali
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2021
Knygos puslapių skaičius: 192
ISBN-10: 6203841412
ISBN-13: 9786203841411
Formatas: 220 x 150 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Support Vector Machine (SVM) Aggregation Modelling: Spatio-temporal Air Pollution Analysis“

Būtina įvertinti prekę

Goodreads reviews for „Support Vector Machine (SVM) Aggregation Modelling: Spatio-temporal Air Pollution Analysis“