Sub-Riemannian Geometry

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: ¿ control theory ¿ classical mechanics ¿ Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) ¿ diffusion on manifolds ¿ analysis of hypoelliptic operators ¿ Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: ¿ André Bellaïche: The tangent space in sub-Riemannian geometry ¿ Mikhael Gromov: Carnot-Carathéodory spaces seen from within ¿ Richard Montgomery: Survey of singular geodesics ¿ Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers ¿ Jean-Michel Coron: Stabilization of controllable systems

Informacija

Serija: Progress in Mathematics
Leidėjas: Birkhäuser Basel
Išleidimo metai: 2011
Knygos puslapių skaičius: 408
ISBN-10: 3034899467
ISBN-13: 9783034899468
Formatas: 235 x 155 x 23 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Sub-Riemannian Geometry“

Būtina įvertinti prekę

Goodreads reviews for „Sub-Riemannian Geometry“