Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Stochastic Neural Networks: Implementation of Stochastic Neural Network for Approximating Random Processes

-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 70.5300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Artificial Neural Networks can be viewed as a mathematical model to simulate natural and biological systems on the basis of mimicking the information processing methods in the human brain. The capability of current ANNs only focuses on approximating arbitrary deterministic input-output mappings. However, these ANNs do not adequately represent the variability which is observed in the systems¿ natural settings as well as capture the complexity of the whole system behaviour. This thesis addresses the development of a new class of neural networks called Stochastic Neural Networks in order to simulate internal stochastic properties of systems. Developing a suitable mathematical model for SNNs is based on canonical representation of stochastic processes or systems by means of Karhunen-Loève Theorem. Some successful real examples, such as analysis of full displacement field of wood in compression, confirm the validity of the proposed neural networks. Furthermore, analysis of internal workings of SNNs provides an in- depth view on the operation of SNNs that help to gain a better understanding of the simulation of stochastic processes by SNNs.

Informacija

Autorius: Hong Ling
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2009
Knygos puslapių skaičius: 116
ISBN-10: 3838300882
ISBN-13: 9783838300887
Formatas: 220 x 150 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Stochastic Neural Networks: Implementation of Stochastic Neural Network for Approximating Random Processes“

Būtina įvertinti prekę