Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Stochastic Modeling of Stock Prices Incorporating Jump Diffusion and Shot Noise Models

-15% su kodu: ENG15
58,66 
Įprasta kaina: 69,01 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
58,66 
Įprasta kaina: 69,01 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 69.0100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Master's Thesis from the year 2016 in the subject Mathematics - Stochastics, grade: 1,7, Technical University of Darmstadt (Forschungsgebiet Stochastik), course: Mathematik - Finanzmathematik, language: English, abstract: In this thesis, we present a stochastic model for stock prices incorporating jump diffusion and shot noise models based on the work of Altmann, Schmidt and Stute ("A Shot Noise Model For Financial Assets") and on its continuation by Schmidt and Stute ("Shot noise processes and the minimal martingale measure"). These papers differ in modeling the decay of the jump effect: Whereas it is deterministic in the first paper, it is stochastic in the last paper. In general, jump effects exist because of overreaction due to news in the press, due to illiquidity or due to incomplete information, i.e. because certain information are available only to few market participants. In financial markets, jump effects fade away as time passes: On the one hand, if the stock price falls, new investors are motivated to buy the stock. On the other hand, a rise of the stock price may lead to profit-taking, i.e. some investors sell the stock in order to lock in gains. Shot noise models are based on Merton's jump diffusion models where the decline of the jump effect after a price jump is neglected. In contrast to jump diffusion models, shot noise models respect the decay of jump effects. In complete markets, the so-called equivalent martingale measure is used to price European options and for hedging. Since stock price models incorporating jumps describe incomplete markets, the equivalent martingale measure cannot be determined uniquely. Hence, in this thesis, we deduce the so-called equivalent minimal martingale measure, both in discrete and continuous time. In contrast to Merton's jump diffusion models and to the well-known pricing model of Black and Scholes, the presented shot noise models are able to reproduce volatility smile effects which can be observed in financial markets.

Informacija

Autorius: Daniel Janocha
Serija: Aus der Reihe: e-fellows.net stipendiaten-wissen
Leidėjas: GRIN Verlag
Išleidimo metai: 2016
Knygos puslapių skaičius: 104
ISBN-10: 3656987602
ISBN-13: 9783656987604
Formatas: 210 x 148 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Stochastic Modeling of Stock Prices Incorporating Jump Diffusion and Shot Noise Models“

Būtina įvertinti prekę

Goodreads reviews for „Stochastic Modeling of Stock Prices Incorporating Jump Diffusion and Shot Noise Models“