Statistical Foundations of Actuarial Learning and its Applications

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.
Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features. Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.

Informacija

Autorius: Michael Merz, Mario V. Wüthrich,
Serija: Springer Actuarial
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2022
Knygos puslapių skaičius: 620
ISBN-10: 3031124081
ISBN-13: 9783031124082
Formatas: 241 x 160 x 39 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Statistical Foundations of Actuarial Learning and its Applications“

Būtina įvertinti prekę

Goodreads reviews for „Statistical Foundations of Actuarial Learning and its Applications“