Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Stabilization of systems and Ingham-Beurling inequalities: Stabilization up to renormalization of dynamics systems and vectorials Ingham-Beurling inequalities

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The main idea of this thesis is to provide the stabilization and the controllability up to renormalization of linear dynamics systems with unbounded feedback . That is mean the exponential stability and the controllability holds in a modified space defined via a natural weight function. As the result we will exprime the exponential decay of the renormalized energy by an observability inequality type. The second axis is devoted to study the pointwise observability, controllability and exponential stabilization of vibrating systems. In order to establish satisfactory stabilization theorems we will introduce functions spaces depending on the arithmetical properties of the stabilization point. Working in this framework for vibrating strings, beams and also for a coupled string-beam system; as a result we will construct a pointwise feedbacks leading to arbitrarily large prescribed decay rates. Finally, we will prove new results concerning the vectorial Ingham-Beurling theorem.

Informacija

Autorius: Alia Barhoumi
Leidėjas: Éditions universitaires européennes
Išleidimo metai: 2011
Knygos puslapių skaičius: 84
ISBN-10: 6131573344
ISBN-13: 9786131573347
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Stabilization of systems and Ingham-Beurling inequalities: Stabilization up to renormalization of dynamics systems and vectorials Ingham-Beurling inequalities“

Būtina įvertinti prekę