Spectral Analysis of Signals: The Missing Data Case

-15% su kodu: ENG15
39,25 
Įprasta kaina: 46,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
39,25 
Įprasta kaina: 46,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 46.1800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.

Informacija

Autorius: Yanwei Wang, Petre Stoica, Jian Li,
Serija: Synthesis Lectures on Signal Processing
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2007
Knygos puslapių skaičius: 108
ISBN-10: 3031013972
ISBN-13: 9783031013973
Formatas: 235 x 191 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Spectral Analysis of Signals: The Missing Data Case“

Būtina įvertinti prekę

Goodreads reviews for „Spectral Analysis of Signals: The Missing Data Case“