Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Spectral Action in Noncommutative Geometry

-15% su kodu: ENG15
79,18 
Įprasta kaina: 93,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
79,18 
Įprasta kaina: 93,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 93.1500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions.
After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries.
The book servesboth as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts.

Informacija

Autorius: Bruno Iochum, Micha¿ Eckstein,
Serija: SpringerBriefs in Mathematical Physics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 172
ISBN-10: 3319947877
ISBN-13: 9783319947877
Formatas: 235 x 155 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Spectral Action in Noncommutative Geometry“

Būtina įvertinti prekę

Goodreads reviews for „Spectral Action in Noncommutative Geometry“