Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Sparse Learning Under Regularization Framework: Theory and Applications

-15% su kodu: ENG15
72,18 
Įprasta kaina: 84,92 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
72,18 
Įprasta kaina: 84,92 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.9200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Informacija

Autorius: Haiqin Yang, Irwin King, Michael R. Lyu,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2011
Knygos puslapių skaičius: 152
ISBN-10: 3844330305
ISBN-13: 9783844330304
Formatas: 220 x 150 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Sparse Learning Under Regularization Framework: Theory and Applications“

Būtina įvertinti prekę

Goodreads reviews for „Sparse Learning Under Regularization Framework: Theory and Applications“