Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Solutions of Fixed Point Problems with Computational Errors

-15% su kodu: ENG15
210,36 
Įprasta kaina: 247,48 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
210,36 
Įprasta kaina: 247,48 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 247.4800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The book is devoted to the study of approximate solutions of fixed point problems in the presence of computational errors. It begins with a study of approximate solutions of star-shaped feasibility problems in the presence of perturbations. The goal is to show the convergence of algorithms, which are known as important tools for solving convex feasibility problems and common fixed point problems.The text also presents studies of algorithms based on unions of nonexpansive maps, inconsistent convex feasibility problems, and split common fixed point problems. A number of algorithms are considered for solving convex feasibility problems and common fixed point problems. The book will be of interest for researchers and engineers working in optimization, numerical analysis, and fixed point theory. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errorsfor several important algorithms used for nonconvex feasibility problems.

Informacija

Autorius: Alexander J. Zaslavski
Serija: Springer Optimization and Its Applications
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2024
Knygos puslapių skaičius: 396
ISBN-10: 3031508785
ISBN-13: 9783031508783
Formatas: 241 x 160 x 27 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Solutions of Fixed Point Problems with Computational Errors“

Būtina įvertinti prekę

Goodreads reviews for „Solutions of Fixed Point Problems with Computational Errors“