Solution Techniques for Elementary Partial Differential Equations

-15% su kodu: ENG15
395,32 
Įprasta kaina: 465,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
395,32 
Įprasta kaina: 465,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 465.0800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

"In my opinion, this is quite simply the best book of its kind that I have seen thus far." -Professor Peter Schiavone, University of Alberta, from the Foreword to the Fourth Edition Praise for the previous editions An ideal tool for students taking a first course in PDEs, as well as for the lecturers who teach such courses." -Marian Aron, Plymouth University, UK "This is one of the best books on elementary PDEs this reviewer has read so far. Highly recommended." -CHOICE Solution Techniques for Elementary Partial Differential Equations, Fourth Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). It provides a streamlined, direct approach to developing students' competence in solving PDEs, and offers concise, easily understood explanations and worked examples that enable students to see the techniques in action. New to the Fourth Edition Two additional sections A larger number and variety of worked examples and exercises A companion pdf file containing more detailed worked examples to supplement those in the book, which can be used in the classroom and as an aid to online teaching

Informacija

Autorius: Christian Constanda
Leidėjas: Chapman and Hall/CRC
Išleidimo metai: 2022
Knygos puslapių skaičius: 442
ISBN-10: 1032001666
ISBN-13: 9781032001661
Formatas: 240 x 161 x 28 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Solution Techniques for Elementary Partial Differential Equations“

Būtina įvertinti prekę

Goodreads reviews for „Solution Techniques for Elementary Partial Differential Equations“