Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Soft computing Techniques for Breast Cancer Detection

-15% su kodu: ENG15
80,61 
Įprasta kaina: 94,84 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
80,61 
Įprasta kaina: 94,84 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 94.8400 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Soft Computing (SC) has emerged as a versatile tool for solving complex computational problems across various fields. SC leverages human-like recognition and learning capabilities to provide innovative solutions to real-world challenges. In an era of data explosion, effective data processing requires selecting key attributes for predictive modelling, leading to the demand for feature subset selection. Feature subset selection is a challenging NP-Hard problem, with various methods categorized into filter, wrapper, and embedded approaches. Metaheuristic algorithms, known for global search capabilities, have been harnessed for feature selection to maximize classification accuracy. With a focus on medical applications, this study explores computer-aided diagnosis, where population-based feature selection methods enhance classification accuracy by reducing analysis time. The research introduces two novel metaheuristic methods, Separated Enemy Driven Dragon Algorithm (SEDDA) and Fitness-based Crow Search Algorithm (FSCA), and compares them with established techniques.

Informacija

Autorius: Srinivasa Rao P, Vani Kumari S, Pradeep Kumar Bheemavarapu,
Leidėjas: Scholars' Press
Išleidimo metai: 2023
Knygos puslapių skaičius: 92
ISBN-10: 6205521199
ISBN-13: 9786205521199
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Soft computing Techniques for Breast Cancer Detection“

Būtina įvertinti prekę

Goodreads reviews for „Soft computing Techniques for Breast Cancer Detection“