Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Soft Computing Methodologies for Bankruptcy Prediction

-15% su kodu: ENG15
61,04 
Įprasta kaina: 71,81 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
61,04 
Įprasta kaina: 71,81 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 71.8100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Prediction plays a critical role in business which works by considering past events to know in advance some future events. Predicting future events can give valuable contributions to a business. A reasonable prediction can guide business leaders to analyze the loopholes in their current procedures and plan for better ones. Bankruptcy is one of the crucial problems faced by many businesses. If such situation can be predicted long before it takes place, lot of computational effort can be saved. Soft computing methods have capability to deal with uncertain environment which is common in most of the businesses. To effectively exploit the tolerance for imprecision and uncertainty, Soft computing uses human mind as a role model by aiming at formalizing the cognitive processes humans employ in routine activities. Hence, Soft computing methods have been discussed in this book for bankruptcy prediction considering the possible factors and the inherent uncertainty. Business leaders need to think about dealing with uncertainty in their business models by proper utilization of these methodologies instead of abandoning all the existing methods at once for achieving the good work.

Informacija

Autorius: Nidhi Arora
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2017
Knygos puslapių skaičius: 116
ISBN-10: 3330039132
ISBN-13: 9783330039131
Formatas: 220 x 150 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Soft Computing Methodologies for Bankruptcy Prediction“

Būtina įvertinti prekę