Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Smart Meter Data Analytics: Electricity Consumer Behavior Modeling, Aggregation, and Forecasting

-15% su kodu: ENG15
140,23 
Įprasta kaina: 164,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
140,23 
Įprasta kaina: 164,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 164.9800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.

Informacija

Autorius: Yi Wang, Chongqing Kang, Qixin Chen,
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2021
Knygos puslapių skaičius: 316
ISBN-10: 9811526265
ISBN-13: 9789811526268
Formatas: 235 x 155 x 18 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Smart Meter Data Analytics: Electricity Consumer Behavior Modeling, Aggregation, and Forecasting“

Būtina įvertinti prekę