This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems ¿ as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis ¿ will find this text to be a valuable addition to the mathematical literature.
Autorius: | Juan José Marín, José María Martell, Marius Mitrea, Irina Mitrea, Dorina Mitrea, |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2022 |
Knygos puslapių skaičius: | 612 |
ISBN-10: | 3031082338 |
ISBN-13: | 9783031082337 |
Formatas: | 241 x 160 x 39 mm. Knyga kietu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Singular Integral Operators, Quantitative Flatness, and Boundary Problems“