Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Simulation-based Algorithms for Markov Decision Processes

-15% su kodu: ENG15
Šiuo metu neparduodama

Knygos aprašymas

Often, real-world problems modeled by Markov decision processes (MDPs) are difficult to solve in practise because of the curse of dimensionality. In others, explicit specification of the MDP model parameters is not feasible, but simulation samples are available. For these settings, various sampling and population-based numerical algorithms for computing an optimal solution in terms of a policy and/or value function have been developed recently. Here, this state-of-the-art research is brought together in a way that makes it accessible to researchers of varying interests and backgrounds. Many specific algorithms, illustrative numerical examples and rigorous theoretical convergence results are provided. The algorithms differ from the successful computational methods for solving MDPs based on neuro-dynamic programming or reinforcement learning. The algorithms can be combined with approximate dynamic programming methods that reduce the size of the state space and ameliorate the effects of dimensionality.

Informacija

Autorius: Hyeong Soo Chang, Steven I. Marcus, Jiaqiao Hu, Michael C. Fu,
Serija: Communications and Control Engineering
Leidėjas: Springer London
Išleidimo metai: 2010
Knygos puslapių skaičius: 208
ISBN-10: 1849966435
ISBN-13: 9781849966436
Formatas: 235 x 155 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Simulation-based Algorithms for Markov Decision Processes“

Būtina įvertinti prekę

Goodreads reviews for „Simulation-based Algorithms for Markov Decision Processes“