Sequential Approximate Multiobjective Optimization Using Computational Intelligence

-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 254.0800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Many kinds of practical problems such as engineering design, industrial m- agement and ?nancial investment have multiple objectives con?icting with eachother. Thoseproblemscanbeformulatedasmultiobjectiveoptimization. In multiobjective optimization, there does not necessarily a unique solution which minimizes (or maximizes) all objective functions. We usually face to the situation in which if we want to improve some of objectives, we have to give up other objectives. Finally, we pay much attention on how much to improve some of objectives and instead how much to give up others. This is called ¿trade-o?. ¿ Note that making trade-o? is a problem of value ju- ment of decision makers. One of main themes of multiobjective optimization is how to incorporate value judgment of decision makers into decision s- port systems. There are two major issues in value judgment (1) multiplicity of value judgment and (2) dynamics of value judgment. The multiplicity of value judgment is treated as trade-o? analysis in multiobjective optimi- tion. On the other hand, dynamics of value judgment is di?cult to treat. However, it is natural that decision makers change their value judgment even in decision making process, because they obtain new information during the process. Therefore, decision support systems are to be robust against the change of value judgment of decision makers. To this aim, interactive p- grammingmethodswhichsearchasolutionwhileelicitingpartialinformation on value judgment of decision makers have been developed. Those methods are required to perform ?exibly for decision makers¿ attitude.

Informacija

Autorius: Hirotaka Nakayama, Min Yoon, Yeboon Yun,
Serija: Vector Optimization
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2009
Knygos puslapių skaičius: 216
ISBN-10: 3540889094
ISBN-13: 9783540889090
Formatas: 241 x 160 x 17 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Sequential Approximate Multiobjective Optimization Using Computational Intelligence“

Būtina įvertinti prekę

Goodreads reviews for „Sequential Approximate Multiobjective Optimization Using Computational Intelligence“