Semiclassical Nonadiabatic Molecular Dynamics: Theory and Simulation with and without Classical Trajectories

-15% su kodu: ENG15
287,96 
Įprasta kaina: 338,78 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
287,96 
Įprasta kaina: 338,78 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 338.7800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book shows how to derive the simple and accurate semiclassical methods analytically and its applications to excited-state molecular dynamics and spectroscopy simulation with and without classical trajectories. It consists of eight chapters demonstrating interesting conical and intersystem-driven photochemical processes in complex systems targeting on large-scale ab initio direct nonadiabatic molecular dynamics. It also includes two chapters dealing with time-independent and time-dependent nonadiabatic molecular dynamics and clarifies the underline principle of Born¿Oppenheimer approximation associated with coherence/decoherence quantum effects that have a wide range of applications in photochemistry and photophysics. This book is interesting and useful to a wide readership in the various fields of basic quantum chemistry and physics associated with large-scale excited-state simulation of nonadiabatic molecular dynamics and spectroscopy.

Informacija

Autorius: Chaoyuan Zhu
Serija: Challenges and Advances in Computational Chemistry and Physics
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2024
Knygos puslapių skaičius: 288
ISBN-10: 9819742951
ISBN-13: 9789819742950
Formatas: 241 x 160 x 21 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Semiclassical Nonadiabatic Molecular Dynamics: Theory and Simulation with and without Classical Trajectories“

Būtina įvertinti prekę

Goodreads reviews for „Semiclassical Nonadiabatic Molecular Dynamics: Theory and Simulation with and without Classical Trajectories“