Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Segmentation of Brain Tumor From MRI Images: Using Fuzzy C-Means Clustering and Seeded Region Growth

-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 51.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In this book, a segmentation method for automatic detection and extraction of brain tumor from Magnetic Resonance Imaging (MRI) images using fuzzy c-means (FCM) clustering and seeded region growth is being presented. The MRI technique provides an excellent contrast between the brain tissues and the tumour tissues. The area containing the tumour is brighter in intensity than the area of healthy brain tissues. The image processing techniques and algorithms are applied on the MRI images of the brain tumour. These images are provided as input to the MATLAB software and pre-processing operations viz., image resizing and conversion to grayscale are applied on this input image. The image is then enhanced using the two-dimensional wavelet decomposition in such a way that the finer details in the image are improved. After the enhancement operation, fuzzy c-means clustering (FCM) is applied for segmentation, which divides the image into a number of clusters, on the basis of intensity values of the pixels.

Informacija

Autorius: Reecha Sharma, Harsimranjot Kaur,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2017
Knygos puslapių skaičius: 88
ISBN-10: 6202025077
ISBN-13: 9786202025072
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Segmentation of Brain Tumor From MRI Images: Using Fuzzy C-Means Clustering and Seeded Region Growth“

Būtina įvertinti prekę

Goodreads reviews for „Segmentation of Brain Tumor From MRI Images: Using Fuzzy C-Means Clustering and Seeded Region Growth“