Securing the Web: Machine Learning for CSRF Vulnerability Detection: Harnessing Machine Learning Algorithms for Accurate Detection and Prevention

-15% su kodu: ENG15
53,70 
Įprasta kaina: 63,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
53,70 
Įprasta kaina: 63,18 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 63.1800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Web Vulnerability Detection of Cross-Site Request Forgery Using Machine Learning Algorithm" is a book that focuses on the detection and prevention of Cross-Site Request Forgery (CSRF) vulnerabilities in web applications. The book presents a precise and practical approach to leveraging machine learning algorithms for identifying and mitigating these web security threats. It offers insights into the risks associated with CSRF attacks, explains the fundamentals of machine learning, and demonstrates how machine learning algorithms can be trained to detect and prevent CSRF vulnerabilities in real-time. This book is a valuable resource for web developers, security professionals, and researchers interested in fortifying web applications against CSRF attacks using advanced machine learning techniques.

Informacija

Autorius: Pallavi Reddy
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2023
Knygos puslapių skaičius: 64
ISBN-10: 620668671X
ISBN-13: 9786206686712
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Securing the Web: Machine Learning for CSRF Vulnerability Detection: Harnessing Machine Learning Algorithms for Accurate Detection and Prevention“

Būtina įvertinti prekę

Goodreads reviews for „Securing the Web: Machine Learning for CSRF Vulnerability Detection: Harnessing Machine Learning Algorithms for Accurate Detection and Prevention“