0 Mėgstami
0Krepšelis

Search for tt¿H Production in the H ¿ bb¿ Decay Channel: Using Deep Learning Techniques with the CMS Experiment

-20% su kodu: BOOKS
135,50 
Įprasta kaina: 169,38 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
135,50 
Įprasta kaina: 169,38 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
2025-03-31 135.50 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

In 1964, a mechanism explaining the origin of particle masses was proposed by Robert Brout, François Englert, and Peter W. Higgs. 48 years later, in 2012, the so-called Higgs boson was discovered in proton-proton collisions recorded by experiments at the LHC. Since then, its ability to interact with quarks remained experimentally unconfirmed. This book presents a search for Higgs bosons produced in association with top quarks tt¿H in data recorded with the CMS detector in 2016. It focuses on Higgs boson decays into bottom quarks H ¿ bb¿ and top quark pair decays involving at least one lepton. In this analysis, a multiclass classification approach using deep learning techniques was applied for the first time. In light of the dominant background contribution from tt¿ production, the developed method proved to achieve superior sensitivity with respect to existing techniques. In combination with searches in different decay channels, the presented work contributed to the first observations of tt¿H production and H ¿ bb¿ decays.

Informacija

Autorius: Marcel Rieger
Serija: Springer Theses
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2022
Knygos puslapių skaičius: 232
ISBN-10: 303065382X
ISBN-13: 9783030653828
Formatas: 235 x 155 x 13 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Search for tt¿H Production in the H ¿ bb¿ Decay Channel: Using Deep Learning Techniques with the CMS Experiment“

Būtina įvertinti prekę

Goodreads reviews for „Search for tt¿H Production in the H ¿ bb¿ Decay Channel: Using Deep Learning Techniques with the CMS Experiment“