Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Risk-Sensitive Reinforcement Learning via Policy Gradient Search

-15% su kodu: ENG15
202,90 
Įprasta kaina: 238,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
202,90 
Įprasta kaina: 238,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 238.7000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Reinforcement learning (RL) is one of the foundational pillars of artificial intelligence and machine learning. An important consideration in any optimization or control problem is the notion of risk, but its incorporation into RL has been a fairly recent development. This monograph surveys research on risk-sensitive RL that uses policy gradient search. The authors survey some of the recent work in this area specifically where policy gradient search is the solution approach. In the first risk-sensitive RL setting, they cover popular risk measures based on variance, conditional value at-risk and chance constraints, and present a template for policy gradient-based risk-sensitive RL algorithms using a Lagrangian formulation. For the setting where risk is incorporated directly into the objective function, they consider an exponential utility formulation, cumulative prospect theory, and coherent risk measures. Written for novices and experts alike the authors have made the text completely self-contained but also organized in a manner that allows expert readers to skip background chapters. This is a complete guide for students and researchers working on this aspect of machine learning.

Informacija

Autorius: Prashanth L. A., Michael C. Fu,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2022
Knygos puslapių skaičius: 170
ISBN-10: 1638280266
ISBN-13: 9781638280262
Formatas: 234 x 156 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Risk-Sensitive Reinforcement Learning via Policy Gradient Search“

Būtina įvertinti prekę

Goodreads reviews for „Risk-Sensitive Reinforcement Learning via Policy Gradient Search“