Renewables in Future Power Systems: Implications of Technological Learning and Uncertainty

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The book examines the future deployment of renewable power from a normative point of view. It identifies properties characterizing the cost-optimal transition towards a renewable power system and analyzes the key drivers behind this transition. Among those drivers, particular attention is paid to technological cost reductions and the implications of uncertainty. From a methodological perspective, the main contributions of this book relate to the field of endogenous learning and uncertainty in optimizing energy system models. The primary objective here is closing the gap between the strand of literature covering renewable potential analyses on the one side and energy system modeling with endogenous technological change on the other side. The models applied in this book demonstrate that fundamental changes must occur to transform today's power sector into a more sustainable one over the course of this century. Apart from its methodological contributions, this work is also intended to provide practically relevant insights regarding the long-term competitiveness of renewable power generation.  

Informacija

Autorius: Fabian Wagner
Serija: Green Energy and Technology
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2014
Knygos puslapių skaičius: 308
ISBN-10: 3319057790
ISBN-13: 9783319057798
Formatas: 241 x 160 x 23 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Renewables in Future Power Systems: Implications of Technological Learning and Uncertainty“

Būtina įvertinti prekę

Goodreads reviews for „Renewables in Future Power Systems: Implications of Technological Learning and Uncertainty“