Realtime Data Mining: Self-Learning Techniques for Recommendation Engines

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

¿¿¿¿Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.¿ The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's ¿classic¿ data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.   This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Informacija

Autorius: Michael Thess, Alexander Paprotny,
Serija: Applied and Numerical Harmonic Analysis
Leidėjas: Springer International Publishing
Išleidimo metai: 2013
Knygos puslapių skaičius: 340
ISBN-10: 3319013203
ISBN-13: 9783319013206
Formatas: 241 x 160 x 24 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Realtime Data Mining: Self-Learning Techniques for Recommendation Engines“

Būtina įvertinti prekę

Goodreads reviews for „Realtime Data Mining: Self-Learning Techniques for Recommendation Engines“