Procedural Content Generation via Machine Learning: An Overview

-15% su kodu: ENG15
84,13 
Įprasta kaina: 98,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
84,13 
Įprasta kaina: 98,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 98.9800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.

Informacija

Autorius: Matthew Guzdial, Adam J. Summerville, Sam Snodgrass,
Serija: Synthesis Lectures on Games and Computational Intelligence
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2023
Knygos puslapių skaičius: 252
ISBN-10: 303116721X
ISBN-13: 9783031167218
Formatas: 240 x 168 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Procedural Content Generation via Machine Learning: An Overview“

Būtina įvertinti prekę

Goodreads reviews for „Procedural Content Generation via Machine Learning: An Overview“