Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Probabilistic Number Theory I: Mean-Value Theorems

-15% su kodu: ENG15
172,77 
Įprasta kaina: 203,26 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
172,77 
Įprasta kaina: 203,26 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 203.2600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

In 1791 Gauss made the following assertions (collected works, Vol. 10, p.ll, Teubner, Leipzig 1917): Primzahlen unter a ( = 00 ) a la Zahlen aus zwei Factoren lla· a la (warsch.) aus 3 Factoren 1 (lla)2a --- 2 la et sic in info In more modern notation, let 1tk(X) denote the number of integers not exceeding x which are made up of k distinct prime factors, k = 1, 2, .... Then his assertions amount to the asymptotic estimate x (log log X)k-l ( ) 1tk X '" --"';"'-"---"::--:-'-,- (x-..oo). log x (k-1)! The case k = 1, known as the Prime Number Theorem, was independently established by Hadamard and de la Vallee Poussin in 1896, just over a hundred years later. The general case was deduced by Landau in 1900; it needs only an integration by parts. Nevertheless, one can scarcely say that Probabilistic Number Theory began with Gauss. In 1914 the Indian original mathematician Srinivasa Ramanujan arrived in England. Six years of his short life remained to him during which he wrote, amongst other things, five papers and two notes jointly with G. H. Hardy.

Informacija

Autorius: P. D. T. A. Elliott
Serija: Grundlehren der mathematischen Wissenschaften
Leidėjas: Springer New York
Išleidimo metai: 2011
Knygos puslapių skaičius: 420
ISBN-10: 1461299918
ISBN-13: 9781461299912
Formatas: 235 x 155 x 23 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Probabilistic Number Theory I: Mean-Value Theorems“

Būtina įvertinti prekę

Goodreads reviews for „Probabilistic Number Theory I: Mean-Value Theorems“