Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Patterns of Scalable Bayesian Inference

-15% su kodu: ENG15
191,60 
Įprasta kaina: 225,41 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
191,60 
Įprasta kaina: 225,41 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 225.4100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with a wide range of assumptions and applicability. Patterns of Scalable Bayesian Inference seeks to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. It examines how these techniques can be scaled up to larger problems and scaled out across parallel computational resources. It reviews existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, it characterizes the general principles that have proven successful for designing scalable inference procedures and addresses some of the significant open questions and challenges.

Informacija

Autorius: Elaine Angelino, Matthew James Johnson, Ryan P. Adams,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2016
Knygos puslapių skaičius: 148
ISBN-10: 1680832182
ISBN-13: 9781680832181
Formatas: 234 x 156 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Patterns of Scalable Bayesian Inference“

Būtina įvertinti prekę

Goodreads reviews for „Patterns of Scalable Bayesian Inference“